
International Journal of Engineering Trends and Technology (IJETT) – Volume-42 Number-7 - December 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 342

Understanding File Upload Security for Web

Applications

Karishma Pooj
#1

, Sonali Patil
*2

#
Student,

 *
Professor, Department of Information Technology (Information Security),

K.J. Somaiya College of Engineering (Aff. To Mumbai University),

Vidyavihar East, Mumbai, India

 Abstract- In today’s times the web model has

become an important mechanism in terms of

information and services delivery over the internet.

With the success of the internet, it becomes important

to take into account the security of the web

application layer from various unauthorized user

attacks.

The main reason for security awareness is due to lack

of trustworthiness of the applications programming

logic or input validation. The best way of preventing

application exploitability is to enforce good security

policies through the applications. This can be done

only when the client and server collaborate to

achieve the desired security goals eliminating the

possibility of such attacks. In this paper we focus on

file upload exploits with respect to web application

security. Various test cases will be explained along

with the impact which will help security testers and

application developers to maintain the confidentiality

and integrity of user data. Finally, potential steps for

mitigation will be provided in order to restrict such

attacks.

Keywords— Web Application Security, Malicious

File Upload, File Upload Security

I. INTRODUCTION

World Wide Web is considered as the main

infrastructure of the global information society on

which the world is highly dependent. The Web

platform is a complex ecosystem composed of a large

number of components and technologies, including

HTTP protocol, web server and server-side

application development technologies, web browser

and client-side technologies [1]. The internet and its

services are now easily accessible to us on portable

devices Web applications have had a huge impact on

fields such as business, education, health and social

life, drastically changing the cultural norms and

individual behaviors. Every week thousands of new

web applications with the power to simplify and ease

the human activity process hit the market. But it is

also important to understand that with such power it

also becomes the responsibility of application

builders to be vigilant about security to protect users.

With the growing popularity of the good guys

developing the applications, there are thousands of

hackers working hard to break into these apps to try

to phish for user information or implant malware.

According to a report by the Web Application

Security Consortium, about 49% of the web

applications being reviewed contain vulnerabilities of

high risk level and more than 13% of the websites can

be compromised completely automatically [2].

There are many factors due to which it becomes

difficult to secure applications which have be taken

into consideration to improve application security.

Insecure applications are built due to shortcomings of

many factors such as security testing done too late in

the SDLC, skipping out on security testing because of

the release rush, budget restraints and more

commonly, the lack of security awareness by

developers. The lack of developer awareness of

secure coding standards along with the lack of budget

spent on mobile application security are two of the

scariest issues. The primary goal of this paper is for

developers and testers to understand the common

vulnerabilities on file upload functionality which

leads to attacks and their respective mitigations for

future secure development.

II. LITERATURE REVIEW

The following papers were referred to understand

web application security:

A. A Survey on Web Application Security

X. Li | Y. Xue
[1]

 have conducted surveys with respect

to web application security techniques. They have

categorized three essential properties: state integrity,

input validation and logic correctness required for

application security along with the future scope of the

research.

B. End-to-end Web Application Security

U. Erlingsson | B. Livshits | Y. Xie
 [3]

 support the

argument that there should be collaboration between

the server and client to improve security. They also

provide examples mechanisms in order to achieve

end-to-end security.

C. A review on Application Security Vulnerabilities

A. Garg | S. Singh
[4]

 provides a look at common web

application vulnerabilities such as remote code

execution, SQL injection, format string

vulnerabilities, cross site scripting, username

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume-42 Number-7 - December 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 343

enumeration along with their examples and

mitigations to overcome their shortcomings.

D. Systematic Review of Web Application Security

Vulnerabilities Detection Methods

S. Rafique | M. Humayun | Z. Gul | H. Javed
[5]

explain the cause of vulnerabilities related to web

application layer. The paper also provides a review

on techniques, stages, approach and tools to detect

vulnerabilities.

E. Web Server Security and Survey on Web

Application Security

S. Almin
[6]

 has described the importance of web

server along with the threats posed by hackers.

Countermeasures against web server threats are also

explained.

F. Security Testing of Web Applications: Issues

and Challenges

A. Jaiswal | G. Raj | D. Singh
[7]

 provide an insight on

the challenges and issues that occur during security

testing of web applications. This is done in order to

provide inputs to testers and managers with respect to

their projects.

This paper adds to the list of issues highlighted by

other authors based on OWASP top 10 categorization

[8].

III. HOW FILE UPLOAD WORKS

File upload in simple words can be described as

transferring a file (photo, audio file, etc.) to a server

on the web. To upload data to a server, the Client first

starts communication with a server by initiating a

TCP/IP connection from the client to the server called

the handshake. In this communication, the client

starts any communication and not the server. When a

connection is established between the client and

servers, data transfer can take place between them.

This does not need any port forwarding to

send/receive data to/from a server. Now the client

needs a file to be uploaded and form in a Web page

through which the file is sent to the server. This lets

the user include one or more files into the form

submission. The below is a simple example of file

upload form:

<FORM METHOD=” post” ECTYPE=”

multipart/form-data” ACTION=””>

<INPUT TYPE=” file” NAME=” Example.exe”>

<INPUT TYPE =” Submit” VALUE=” Send File”>

</FORM>

Once the form is sent over the channel to the server it

is often processed so that the files are stored onto the

disk of the Web server. Now the server-side script is

to be executed once the file is received on the server.

The server knows how to handle such a request and

stores the data. It saves the file onto the server’s disk

under some name, but it might just as well process

the data only by extracting some information from it.

IV. RESULTS

Different ways in which file upload functionality can

be exploited are as explained below:

A. Case 1 – No Filter

Summary:

No validation is performed at client end or server

end.

Steps:

Select an executable file (e.g. Calc.exe) to be

uploaded. Submit the file in the upload feature and

observe if the file is uploaded successfully.

Vulnerability Reason:

In this type we directly upload an

executable/malicious file. The possibility of this

vulnerability occurring is when no validation is

applied in application at the client and server end.

B. Case 2 – Bypass client side validation

Summary:

Validations applied at client side can be bypassed

using developer options.

Steps:

Select an executable file (e.g. Calc.exe) to be

uploaded. Before uploading, select the developer

options using the F12 button.

In the JavaScript file, search for the function

which validates the type of upload and apply break

points.

Start debugging and submit the file in the upload

feature.

During execution, change the extension of

allowable file type to malicious type in JavaScript

function and observe if the file is uploaded

successfully.

Another way to perform this is to return a true

value from the JavaScript function which performs

file validation.

Vulnerability Reason:

The breakpoints applied are to change the

allowable extension from a particular type (say

.pdf) to another type(.exe) which is disallowed.

The file is uploaded due to validations performed

only at client side.

C. Case 3 – Perform stored XSS on file name

Summary:

An attacker is able to perform stored XSS using

file upload feature.

Steps:

Select a white-listed file (e.g. Test.txt) and upload

the file using the submit feature.

As soon as the submit button is clicked, intercept

the request using a proxy tool.

Change the file name from “Test.txt” to

“XSS<img src=””

onerror=alert(document.cookie)>Test.txt” and

forward the request to the server.

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume-42 Number-7 - December 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 344

Vulnerability Reason:

The attack is possible as there is no sanitization on

file name.

D. Case 4 – No file content validation

Summary:

No validation is performed to check the contents

of the file uploaded by the end user.

Steps:

Select a white-listed file (e.g. Test.txt) and upload

the file using the submit feature.

As soon as the submit button is clicked, intercept

the request using a proxy tool.

Add EICAR value in the file body and forward the

request to the server.

Vulnerability Reason:

Since file is a part of allowable extensions, client

side validation allows the file to be uploaded. No

content validation is performed at server side;

hence the file is uploaded.

E. Case 5 – No file size validation

Summary:

No validation is performed to check the size of the

file uploaded by the end user.

Steps:

Select a white-listed file whose size should be

larger than required, based on the business logic

(say 100Mb). Upload the file using the submit

feature.

As soon as the submit button is clicked, intercept

the request using a proxy tool.

Change the value of size parameter in the request

and forward the request to the server.

Another way to do is to change the value of the

JavaScript function which validates the size of file

to true.

Vulnerability Reason:

Since file is a part of allowable extensions, client

side validation allows the file to be uploaded. No

file size validation is performed at server side;

hence the file is uploaded.

F. Case 6 – Bypassing validation based on content

type/mime type

Summary:

When the validation is based just on content type,

attack can be made by manipulating the content-

type of a file which specifies the nature of data.

Steps:

Select the executable file (Test.exe) to be

uploaded. Upload this file into the upload feature

by clicking on the submit button also intercepting

the request in a proxy tool.

Now we change the content-type of an executable

file from application/x-msdownload to an

allowable content-type (say text/plain) and forward

the request.

Vulnerability Reason:

This vulnerability is possible when the validation

is done only based on the content-type, but the

body contains executable functions.

G. Case 7 – Bypassing blacklisting using Multiple

extension (Type I)

Summary:

This type is possible by using more than one type

of file extension.

Steps:

Select an executable file (Test.exe) and rename it

to an allowable file extension (Test.exe.jpg).

This can also be done by intercepting the request

using a proxy tool and changing the values.

Upload this file/forward the request and observe

the results.

Vulnerability Reason:

Assuming that .htaccess file has following line of

code:

AddHandler php5-script.php

This line checks only if the uploaded extension is a

PHP; it doesn’t necessarily check what order it is

placed in. For example, it would execute all the

following files as PHP due to vulnerable code in

.htaccess file:

Test.php.jpg, test.php.pdf, etc.

H. Case 8- Bypassing blacklisting using

Multiple extension (Type II)

Summary:

This type is performed by separating file

extensions using Semi colons. This attack is

possible on IIS server 6 or prior.

Steps:

Select an executable file (Test.exe) and rename

it(Test.exe;.jpg) to an allowable file extension.

This can also be done by intercepting the request

using a proxy tool and changing the values.

Upload this file/forward the request and observe

the results.

Vulnerability Reason:

During file upload, when Test.exe;.jpg is

uploaded, server will only check the first dot from

the right. When it sees .jpg, the server allows the

file to get successfully uploaded concluding that

this extension is not in the list of dangerous

extension. IIS server executes Text.exe;.jpeg as

Text.exe. Also “test.exe/file.txt” is later executed

as test.exe.

I. Case 9 – Bypassing blacklisting using

multiple extensions (Type III)

Summary:

This type is performed by using forbidden file

extensions along with file extension which is not

permitted by the application.

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume-42 Number-7 - December 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 345

Steps:

Select an executable file (Test.exe) and rename it

(Test.exe.aabbcc) with a file extension which the

server or client does not understand.

This can also be done by intercepting the request

using a proxy tool and changing the values.

Upload this file/forward the request and observe

the results.

Vulnerability Reason:

When last extension (in our example .aabbcc), is

not specified in the list of mime-types known to

the web server, Test.exe.aabbcc will be interpreted

as Test.exe and will be executed.

J. Case 10 – Bypass blacklist using uncommon

executable extensions

Summary:

Blacklisting can often be bypassed using

uncommon executable extensions such as php3,

php4, php5, shtml, phtml, cgi which are

understood by server.

Steps:

Upload any server executable file in the file

upload feature of the application.

Vulnerability Reason:
The vulnerability is possible since these file

extensions are default files of the server and are

accepted when they are uploaded. These extension

codes can be modified with malicious content.

K. Case 11 – Bypass blacklist by changing case in

extension

Summary:
Blacklisting is bypassed by changing a number of

letters to their capital forms to bypass case

sensitive rules (e.g. "file.aSp" or "file.PHp3").
Steps:

Select any malicious file which is blacklisted by

the server (Test.php).

Change some letters in the extension to their

capital form (say Test.pHp or Test.PHp) and

upload the file.

Vulnerability Reason:

This vulnerability occurs when validation applied

for filtering disallowed files is not proper. Security

checks made for filtering disallowed files should

be case insensitive.

L. Case 12 – Bypass blacklist type by adding neutral

spaces

Summary:

Blacklisting is bypassed by adding neutral spaces

or dots in Windows file system and slash and dots

in Unix file system.

Steps:

Select any malicious file which is blacklisted by

the server (say Test.php).

Add some trailing spaces or dots after the

extension (say Test.php………) and upload the file

in file upload functionality of the application.

Vulnerability Reason:
Finding neutral characters after a filename such as

trailing spaces and dots in Windows file system or

dot and slash characters in a Linux file system are

removed automatically. These characters at the end

of a filename will be removed automatically (e.g.

"file.asp", "file.asp ", or "file.asp.").

M. Case 13 – Bypass blacklist using Null Byte

Summary:

This attack is possible by using NULL Byte in the

allowed file extensions.

Steps:

Select executable file (Test.exe) and rename it

(Test.exe%00.jpg).

Another way to add the NULL byte is by

intercepting the request in a proxy tool.

Observe if the file is uploaded successfully.

Vulnerability Reason:

Web application will accept the file as jpg. Null

byte (0x00) is used as a string terminator. When

web server tries to read it stops at Test.exe as it

encounters a null byte and the file is treated as

executable file.

N. Case 14 – Bypass using embedded executable

extension in excel sheet

Summary:

In this type we try to embed an executable file

within an excel file and upload it onto the server

which allows .xls or .xlsx formats.

Steps:

First we embed an executable file into the excel

file using the Object option from the toolbar.

Now we write a small script/formula in the cell

such that the executable file embedded is executed

as soon as the excel file is opened.

Thus an excel file is created where malicious file

and code is written.

Upload this file and observe if the file was

uploaded successfully.

Vulnerability Reason:

The attack is possible since there is no validation

done at client side to check the body contents of

the attached file.

O. Case 15 – Bypass using embedded executable

in pdf file

Summary:

In this type we try to embed an executable file

within a PDF file and upload it onto the server that

allows .pdf format.

Steps:

First we embed an executable file into a PDF file

using the path View>Comment>Annotations from

the toolbar.

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume-42 Number-7 - December 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 346

From annotations, select attach file and place the

cursor in the document and browse the file you

want to attach. Attach an excel file with an

executable file embedded into it.

Thus a pdf file is created where malicious excel

file is embedded.

Upload this file and observe if the file was

uploaded successfully.

Vulnerability Reason:

The attack is possible since there is no validation

done at client side to check the body contents of

the attached file.

P. Case 16 – Overwriting critical files

Summary:

In this type we try to overwrite critical files on the

webserver such as .htaccess or web.config file.

Steps:

Find the path of the .htaccess file onto the server

using information gathering.

Following line can be added in .htaccess file

before uploading:

AddType application/x-httpd-php .gif

Once the path is found, the above manipulated

.htaccess file can be uploaded on the desired path

using the file upload feature.

Vulnerability Reason:

If the webserver allows to modify sensitive files

such as .htaccess file or web.config file, we can

upload files to modify how different files should

be executed on the server. The .htaccess file

contains restrictions for a particular folder. Now

there are locations where the server allows the user

to upload and overwrite files. Using this feature of

over writing an attacker can replace the .htaccess

file with a manipulated one allowing permissions

to execute scripts.

The above malicious line (AddType application/x-

httpd-php .gif) explained would basically execute

every gif file inside the webserver as a PHP. So

once an attacker uploads .htaccess file containing

that code, attacker can rename any malicious file

as Test.gif which will be interpreted as a PHP file

by the webserver.

V. MITIGATION

 The application should use a whitelist of

allowed file types. This list determines the

types of files that can be uploaded, and

rejects all files that do not match approved

types.

 Only allow authorized and authenticated

users to use the feature.

 Serve fetched files from your application

rather than directly via the web server.

 Write to the file when you store it to include

a header that makes it non-executable.

 Define a .htaccess file that will only allow

access to files with allowed extensions.

 Do not place the .htaccess file in the same

directory where the uploaded files will be

stored. It should be placed in the parent

directory.

 A typical .htaccess which allows only gif,

jpg, jpeg and png files should include the

following (adapt it for your own need). This

will also prevent double extension attacks.

 The most important thing is to keep

uploaded files in a location that can’t access

though the Internet. This can be done either

by storing uploaded files outside of the web

root or configuring the web server to deny

access to the uploads directory.

 Prevent overwriting of existing files (to

prevent the .htaccess overwrite attack).

 Don’t rely on client-side validation only,

since it is not enough. Ideally one should

have both server-side and client-side

validation implemented. The application

should use client- and server-side input

validation to ensure evasion techniques have

not been used to bypass the whitelist filter.

 Set a pre-defined size and file name length.

 Files that are uploaded should be scanned by

antivirus software.

 The application should not use the file name

supplied by the user. Instead, the uploaded

file should be renamed according to a

predetermined convention. Thus, the

attacker will encounter problems trying to

determine the name of the file in the

uploaded folder.

VI. CONCLUSION

In this paper we have highlighted the importance of

application security and how users could be affected

by such data loss. Due to large user base of web

applications it becomes necessary to make

organizations aware of application security practices

to prevent these types of break-ins. We have

demonstrated various ways to bypass the file upload

vulnerability using open source tools, along with their

mitigations. Security is not a one-time event due to

which it insufficient to perform security analysis on

the application just once. An application can meet the

security requirements only when all the stages of an

application development cycle are analyzed securely

by developers and testers. This paper aims at

providing awareness to apply security measures for

file uploads at client and server side which will

reduce the security testing cost by itself.

ACKNOWLEDGEMENT

I offer my profound gratitude towards all the staff

members of K. J. Somaiya College of Engineering,

http://www.ijettjournal.org/

International Journal of Engineering Trends and Technology (IJETT) – Volume-42 Number-7 - December 2016

ISSN: 2231-5381 http://www.ijettjournal.org Page 347

Vidyavihar, Mumbai for providing me all academic

a ss i s t ance required to complete this paper.

I would like to thank my colleagues, who have

contributed to ease the understanding of this project

and this paper by giving their time and taking a keen

interest in making this a success.

REFERENCES

[1] X Lie and Y Xue. " A Survey on Web Application

Security." Vanderbilt University,
“http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

434.7174&rep=rep1&type=pdf”.

[2] Web Application Security Statistics,

“http://projects.webappsec.org/w/page/13246989/WebApp

lication SecurityStatistics.”

[3] Ulfar Erlingsson, Benjamin Livshits, Yinglian Xie, "

Microsoft Reasearch", “http://research-
srv.microsoft.com/en-

us/um/people/livshits/papers/pdf/hotos07.pdf”.

[4] Ashwani Garg, Shekhar Singh. "A Review on Web

Application Security Vulnerabilities." International Journal

of Advanced Research in Computer Science and Software
Engineering (2013): 222-226.

[5] Rafique, Sajjad, Mamoona Humayun, Zartasha Gul, Ansar
Abbas, and Hasan Javed. "Systematic Review of Web

Application Security Vulnerabilities Detection Methods."

Journal of Computer and Communications 03.09 (2015):

28-40.

[6] B. Shaikh, "Web Server Security and Survey on Web
Application Security," International Journal on Recent and

Innovation Trends in Computing and Communication, vol.

2, no. 1, pp. 114–119, Jan. 2014.

[7] Jaiswal, Arunima, Gaurav Raj, and Dheerendra Singh.

"Security Testing of Web Applications: Issues and
Challenges." International Journal of Computer

Applications88.3 (2014): 26-32.

[8] OWASP Top 10-2013,
“https://www.owasp.org/index.php/Top_10_2013-Top_10.”

http://www.ijettjournal.org/

